A Subset of Dorsal Neurons Modulates Circadian Behavior and Light Responses in Drosophila

نویسندگان

  • Alejandro Murad
  • Myai Emery-Le
  • Patrick Emery
چکیده

A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light and Temperature Control the Contribution of Specific DN1 Neurons to Drosophila Circadian Behavior

The brain of Drosophila melanogaster contains approximately 150 circadian neurons [1] functionally divided into morning and evening cells that control peaks in daily behavioral activity at dawn and dusk, respectively [2, 3]. The PIGMENT DISPERSING-FACTOR (PDF)-positive small ventral lateral neurons (sLN(v)s) promote morning behavior, whereas the PDF-negative sLN(v) and the dorsal lateral neuron...

متن کامل

DN1p Circadian Neurons Coordinate Acute Light and PDF Inputs to Produce Robust Daily Behavior in Drosophila

BACKGROUND Daily behaviors in animals are determined by the interplay between internal timing signals from circadian clocks and environmental stimuli such as light. How these signals are integrated to produce timely and adaptive behavior is unclear. The fruit fly Drosophila exhibits clock-driven activity increases that anticipate dawn and dusk and free-running rhythms under constant conditions....

متن کامل

Balance of Activity between LNvs and Glutamatergic Dorsal Clock Neurons Promotes Robust Circadian Rhythms in Drosophila

Circadian rhythms offer an excellent opportunity to dissect the neural circuits underlying innate behavior because the genes and neurons involved are relatively well understood. We first sought to understand how Drosophila clock neurons interact in the simple circuit that generates circadian rhythms in larval light avoidance. We used genetics to manipulate two groups of clock neurons, increasin...

متن کامل

A Self-Sustaining, Light-Entrainable Circadian Oscillator in the Drosophila Brain

BACKGROUND The circadian clock of Drosophila is able to drive behavioral rhythms for many weeks in continuous darkness (DD). The endogenous rhythm generator is thought to be generated by interlocked molecular feedback loops involving circadian transcriptional and posttranscriptional regulation of several clock genes, including period. However, all attempts to demonstrate sustained rhythms of cl...

متن کامل

GW182 Controls Drosophila Circadian Behavior and PDF-Receptor Signaling

The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007